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In this and the following paper, a new approach for the justification of ensembles in 
statistical mechanics is given. The essential physical idea is that a measurement is an 
average of values arising from disjoint regions in three-space. This idea is given a 
mathematical basis in terms of a class of operators called "local operators," and the 
first paper is devoted primarily to the development of the properties of local operators. 
In particular, a complete characterization of the bounded local operators on ~2  
spaces of finite measure is given. Two results of importance for statistical mechanics 
are also derived. First, it is shown that the observables of quantum mechanics are 
local operators. Second, it is shown that the expectation value of an observable for a 
pure state can be written formally as an ensemble average. In the following paper, 
these results are used to develop a new approach for the justification of statistical 
ensembles. 

KEY W O R D S :  Local operators; ensemble average; microcanonical ensemble; founda- 
tions of statistical mechanics. 

1. I N T R O D U C T I O N  

A cent ra l  p r o b l e m  in the  f o u n d a t i o n  o f  s ta t is t ical  mechan ic s  is the  jus t i f i ca t ion  o f  

t he  use o f  s ta t is t ical  averages  o r  ensembles .  T h e  use o f  such  averages  was  i n t r o d u c e d  

by  G i b b s  at  the  end  o f  the  n i n e t e e n t h  century ,  (1) a l t h o u g h  the  averages  were  c o n c e i v e d  
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by him as merely a formal device for understanding macroscopic systems. Gibbs' 
ideas have worked so well, however, that they are now accepted as essential to the 
theory of statistical mechanics. 

Gibbs' idea of statistical averaging is a simple one. Namely, if the mechanical 
"state" of a system is unknown, a value for an observable of the system may be 
calculated by averaging over all those states which might conceivably represent the 
unknown state of the system. Such an average over possible states is called a represen- 
tative ensemNe average, where the term "representative" is meant to convey that each 
state in the average actually represents a system which is identical in its preparation 
to the system of interest. Tolman 12) and others (~,4) have made it plausible that the 
average should be an equally weighted one for closed systems--the ultimate justifica- 
tion for such an assumption being that predictions based on it are verified 
experimentally. Thus, the physical picture of an ensemble is a collection of independent 
systems which are prepared in the same fashion. The ensemble average is performed 
by making measurements on each system and averaging the results. 

Although the introduction of ensembles by Gibbs was made well before the 
advent of quantum mechanics, it seemed to foreshadow some of the more profound 
aspects of the quantum theory. For  example, in the Copenhagen interpretation of 
quantum mechanics, (s) it is assumed that the state of any physical system is a vector ~b 
in a Hilbert space. The state ~b, however, gives information only about the distribution 
of measured values taken from experiments on a collection of independent systems 
all in the state ~b. Such a collection is called a pure state ensemble and corresponds 
closely to the ensemble of Gibbs'. Of course, Gibbs did not envision that dispersion 
might arise from the mechanical state itself. 

The notion of a pure state in quantum mechanics has a natural generalization 
called by yon Neumann a mixed state. (6) The idea, in fact, is exactly that of Gibbs but 
with deeper implications. Von Neumann considered preparations for which the state 
~b of the system was unknown. Under these conditions, it is not possible to prepare the 
pure state ensemble which is the meaningful object in quantum mechanics. Von 
Neumann, however, argued that it is possible to prepare an ensemble in which it is 
required only that each system have the same preparation as the system of interest. 
When the distribution of measured values for such an ensemble is obtained, these 
constitute the "state" of the incompletely prepared system in exactly the same way 
that a pure state ensemble contains the information relevant to a pure state ~b. (7) 
Since the distribution of measured values for such a mixed state ensemble can be 
represented by a density operator, it is concluded that the "state" of a physical system 
is actually given by a density operator. 

In this way, von Neumann's mixed state seems to vindicate the Gibbs' idea. 
Unfortunately, it does so in a very unsatisfactory way, because the density operator is 
a purely observational property: it must be determined experimentally in the same 
sense that a pure state ~b must be determined. In other words, the conclusion is that a 
density operator, i.e., a representative ensemble average, correctly describes a physical 
system but that there is no theoretical way of determining the density operator. This 
indeterminacy of the density operator has been stressed by Tolman (~) and more 
recently by Fano. (7) 
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There is another disadvantage to this method of looking at ensembles. The 
formalism is set up to deal with measurements that are made on an ensemble of 
systems. Since this is the case for small systems--for example, individual particles in 
an "ensemble" formed by a beam of noninteracting particles--the density-operator 
formalism is extremely useful. The formalism can clarify interesting properties of large 
systems, however, only when the density operator is known. For example, an important 
question for macroscopic systems is why macroscopically identical systems maintain 
their macroscopic identity over time. The density-operator formalism can answer 
only that over time the density operator corresponds to a "sharp" distribution of 
values. But this can be checked only when the density operator is known, and the 
size of large systems makes this prohibitive. (2,7,8~ 

There is, however, an alternative approach for justifying the use of ensembles in 
statistical mechanics which uses an idea familiar in both quantum and classical 
mechanics. This approach assumes the existence of a vector ~b (or, in the case of 
classical mechanics, a collection of coordinates and momenta) which describes the 
state of the system completely even if the vector ~b is unknown. Of course, when ~b is 
unknown, it has no operational or predictive value. However, if a system has been 
prepared in some way, it certainly can be said that its state ~b is one of those states 
compatible with that preparation. Thus, even though ~b is unknown, it is possible to 
examine all the states compatible with the preparation of the system to see if they have 
any common properties--for example, similar distributions of measured values. In 
fact, this is exactly the tactic used in ergodic theory (9~ and will be adopted here. 

1.1. Ergodic T h e o r y  

Quantum ergodic theory is a natural extension of the ideas of the classical theory 
and originated in the work of yon Neumann. (1~ Von Neumann proved two kind of 
ergodic theorems, a so-called fined-grained and a coarse-grained theorem. The first 
of these is of little use since it applies only to pure state preparations of macroscopic 
systems(9); the coarse-grained version has recently fallen into ill-repute because of a 
certain averaging process involved in the proof.(9.m The central ideas of von Neumann, 
however, are clear, and recent attempts have been made to repair his work. (m 

Ergodic theory considers an equilibrium preparation of a closed system and 
seeks to examine the nature of the distribution o f  each pure state ~b consistent with 
the preparation. This is done by assuming that the actual distribution is a time average 
of the quantum mechanical distribution. Since a pure state distribution can be deter- 
mined completely by the expectation values of the moments of observables, it suffices 
to examine the distribution by considering expectation values. Thus, the expectation 
value of an operator A at time t, (~b(t), A~b(t)), is replaced by its time-average value 

(~(t), A~b(t)) = (l/t0) j~ (Sb(t), Asb(t')) dt' 

In order to justify the use of the microcanonical density operator, ergodic theory 
attempts to show that (sb(t), A~b(t)) equals the microcanonical 'average of A for all 
times and all initial states that agree with the equilibrium preparation. The techniques 
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that are used, however, show only that this holds for almost all initial states and almost 
all initial times/11) Moreover, to prove even this, it must be assumed that states agree- 
ing with the preparation occur in nature with equal likelihood, clz) But this, it is clear, 
is equivalent to assuming the microcanonical form for the density operator in von 
Neumann's formalism, and so this method creates no new insight into the problem, c9~ 

1.2. Introductory Notions 

Since quantum ergodic theory sheds little light on the use of ensembles in 
statistical mechanics, an entirely different approach to the problem is presented in this 
paper. In fact, the methods developed here are more general than those of ergodic 
theory and can be applied to preparations corresponding to systems both in and out 
of equilibrium. 

The basic technique of this method is the same as that of ergodic theory. Thus, 
for a given type of preparation for a system, the quantum mechanical distributions of 
all states ~b consistent with the preparation are examined. It is not necessary to 
introduce time averages into this approach and so the distribution of a pure state will 
be examined solely by looking at expectation values. 

It should be stressed at the outset that the question to which this work is directed 
concerns the specification of the "state" of a large system. The exact question is, 
"For  what preparations can a density operator, i.e., a representative ensemble average, 
be used to calculate expectation values for all systems agreeing with the preparation ?" 
In other words, an attempt is made to understand the observation that identically 
prepared macroscopic systems behave identically over time if the preparation is 
specific enough. The important question of the details of the temporal behavior, e.g., 
approach to equilibrium or macroscopic conservation laws, is not discussed since its 
answer seems to be disjoint from the present considerations. 

The motivation for the approach developed here is physical. Because measure- 
ments on a large system involve interactions with immense numbers of particles, 
it is reasonable to expect that the "statistical" aspects of statistical mechanics arise 
from the measuring process itself. That is, disjoint portions of a large system somehow 
contribute incoherently to measured values and so an ensemble average is actually 
performed during a measurement. 

In order to develop a stronger feeling for this notion, consider a measurement 
of an intensive quantity g(r), for example, the momentum density. Using the particle- 
number-operator formalism and interpreting g(r) as the expectation value of a field- 
density operator, it is easy to see that the values of g(r) in a three-space region 
depend only on the wave function in a small part of configuration space, N~. In fact, 
N~ is just that part of configuration space for which one of the particles is in the region 
a. This is illustrated in Fig. 1 for the case of two one-dimensional particles. 

The fact that only a small portion of the wave function is needed to specify g(r) 
in the region ~ implies that localized measurements in three-space have a kind of 
localized analog in configuration space. In particular, a measurement in a region 
of three-space "detects" only that part of the wave function defined on the associated 
region No in configuration space. Moreover, it is clear from Fig. 2 that there is only 
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Fig. 1. 
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Configuration space for two particles in one dimension. The cross-hatched region N~ is 
that part of configuration space for which at least one particle is in the region ~r. 

slight overlap between configuration-space regions N~I and N~ 2 which are associated 
with disjoint three-space regions o' 1 and e~. Thus, measurements at a fixed time in 
disjoint regions o f  three-space are in general independent of  one another.  

To see what implications this "independence o f  measurements"  has for  large 
systems, consider the spectrophotometric  measurement o f  the density at a point  r 
in a large system. The measurement is carried out in two steps. In  the first step, a 
pho ton  is directed into a small region Z around r; in the second step, a detector deter- 
mines whether or  not  the pho ton  has been absorbed. The total measurement  is a sum 
of  similar processes involving many photons.  Consider next that  the region Z has been 

Fig. 2. 
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The overlap of the configuration-space regions N,~ and N,~ is shown by the double cross- . 1 . 2 
hatching. See text for explanation. 
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divided up into disjoint subregions a and then form the corresponding regions in 
configuration space N , .  Then, the photons that traverse through the region cr 
"measure" a density determined only by the wave function defined on the configura- 
tion-space region No. But since the values of the wave function on different regions 
N, are independent of one another, the final measured value will be just an incoherent 
average of the values obtained from each region No. This may be written as 

e--- 2 eoao 
G 

where d is the measured density at r, do is the density obtained from the region N, ,  
and P~ is some weight factor depending on the division of 27 into subregions. Clearly, 
by choosing the division appropriately, P,  will be the same for each subregion. Thus, 
the measured value can be thought of as an equally weighted average of values each 
of which arises from an independent portion of the wave function. It should be stressed 
that, to arrive at this notion, the particles in the three-space regions cr are not considered 
to be independent. In fact, it is the measured values which are independent and 
independence is obtained only by looking at the configuration space. 

If this physical idea that measured values are a superposition of values obtained 
from different "local" regions in configuration space is correct, it is reasonable to 
expect that quantum mechanics has some sort of "local" property built into its 
structure. In fact, it turns out that this notion of localness can be given an exact 
mathematical formulation in terms of a class of operators, called local operators, 
which is defined below. The important result in this connection is that the observables 

in quantum mechanics are local operators. Using this property, it is shown that inde- 
pendent contributions to expectation values do indeed come from disjoint regions in 
configuration Space. 

The first paper in this series is devoted to the development of the mathematical 
properties of local operators. The most useful result obtained here is a theorem that 
demonstrates the existence for any local operator of a nontrivial extension which is 
also a local operator. Using this theorem, a complete characterization of the bounded 
local operators on A~ spaces of finite measure is given. Finally, a preliminary result of 
importance in statistical mechanics is obtained by showing that a pure state expectation 
value of a local operator can be written exactly in the form of an ensemble average. 
The second paper in this series considers the special case of large systems and attempts 
to connect the formal ensemble average developed in this paper to the physical 
ensemble average of Gibbs. 

2. M A T H E M A T I C A L  P R E L I M I N A R I E S  

Since it is attempted in this series of papers to examine the foundations of statis- 
tical mechanics using quantum mechanics, it is necessary to explore the mathematics 
of quantum mechanics in detail. Certain theorems developed in this section concerning 
quantum mechanical operators and the topology of configuration space are absolutely 
essential to the final results. 

The notation used in this and the following paper is that of Hewitt and Strom- 
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berg (is) and is relatively standard. Thus, if E is a point set, E '  is its complement; E -  
its closure; E ~ its interior; and OEits boundary. The symbol U means the set union, and 
0 the intersection. The symbols Uk, 0 J ,  etc. represent the repeated union or inter- 
section over a collection of indexed sets. The notation {~k}k=~ (often written {~})  
means a collection of sets c~k indexed by the integers. 

The customary mathematical setting for quantum mechanics is a Hilbert space. 
Following von Neumann, (6) the Hilbert space for an N-particle system without spin 
is taken to be 582(R~N), the space of all Lebesgue, 3N-dimensional, square-integrable, 
complex-valued functions defined on Rz:L Since only closed systems in bounded 
containers are considered, attention is restricted to the functions in s where V 
is the open subset of R 3N for which the coordinates of the particles are inside the 
container. 

In the following, the 3N-dimensional Lebesgue measure of a set E is written 
)t(E), while the notation for the corresponding Lebesgue integral of  a function f is 
f fd).  The scalar product and norm in 582(V) are defined by (f, g) = ff*g d,~ and 
IIfll -- (f,  f)l/2, respectively. 

2.1. Local O p e r a t o r s  

The operators on 583 that correspond to observables in quantum mechanics are 
the Hermitian operators. For these operators, the scalar product (f,  A f) has the usual 
interpretation of an expectation value. There is, however, another class of the linear 
operators that includes many of the observables of quantum mechanics and whose 
members are appropriately called local operators. 2 

Definition. A linear operator A defined on 9(A) C 582 is called a local operator 
if, whenever ~1, ~b~ s ~(A) and r = r almost everywhere a on an open set N, then 
Ar = A~b2 a.e. on N. Notice that, since A is linear and ~(A) is a linear subspace, this 
definition is equivalent to the following: A is a local operator if, whenever ~b e N(A) 
and r = 0 a.e. on an open set N, then A~b = 0 a.e. on N. 

Certainly, an operator whose effect is to multiply functions by some given func- 
tion is a local linear operator. Also, it is clear that all orders of differential operators 
are local operators since the derivative of a function depends only on the values of the 
function in an arbitrarily small neighborhood of the point of evaluation. Hence, the 
Hamiltonian as well as the position and momentum operators are local linear 
operators. Integral operators are not, in general, local. 

Before investigating the properties of local operators, it is important to make a 
remark about the domain of  definition of quantum mechanical operators. It is well 
known, for example, that the differential operator is undefined for most elements of  
583 and is defined properly only for those functions that have square-integrable 

This terminology should not be confused with that of "local observables" which has been used 
elsewhere. (18J Indeed, the only common feature of the two concepts seems to be the adjective 
"local." 

a Hereafter written a.e. 
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derivatives. Indeed, it is necessary ~) that the domain ~(A) of a linear operator be 
a linear subspace and have property that, i f f ~  ~(A), then Af~  .Y~. 

In case A is a local linear operator and ~(A) is the domain of A, there is a natural 
way of extending A to a local linear operator ~/which agrees with A on N(A). 

Definition. L e t / "  be the set of a l l f e  ~qo such t h a t f  = 52e ~:g~f~ except possibly 
on ([,)e EO' ~ V, where (i) {E~} is a countable collection of pairwise disjoint open 
subsets of V, (ii) A((0~ E~)' r3 V) ~ 0, and (iii)f~ ~ N(A). ~ Then, f o r f e  F, define 

k 

if the right-hand side converges. N(~) is the set of all f ~ / "  on which z / i s  defined, 
and 2/is called the natural extension of A. 

The following theorem asserts that ~/is a proper extension of A. 

Theorem 1. 
following hold: 

(0 
(iO 

If X is the natural extension of a local linear operator A, then the 

I f f e  N(A), t h e n f ~  ~(A) and .,{f = A f  

N(A) is a domain for A and A is linear on N(A). 

./I is a local operator. 

I f  f = ~ ~:~f~ and f ~ 2~ ~:g~g~ (in the sense of the definition of the 
natural extension), then ~ ~zAf~ ~-- ~ ~vAg~ a.e. That is, the extension 
is single-valued. 

Proof. Part (i) is easy to prove since ~(V'c~ V) = 0. Thus, if f ~  ~(A), then 
f ~- ~v f  and #if = ~vAf = AZ Sincef~ ~(A), .~f ~ A f  ~.LP 2 . 

To prove (ii), l e t f ~  ~(~i). Then, f = ~ scz~f~ except possibly on (U~ Ek) 'c~ V. 
Thus, for any complex number c~, e~f---- ZT~ ~:~ c~f~ except possibly on (0~ E e ) ' n  V 
and ~f~ ~ N(A), since ~(A) is a linear subspace. Also, 

~ ( 4 )  = 2 ~E~A(c~f~) = ~ ~E~aAf~ = a ~ ~ A f ~  = aAf  
k k k 

because A is linear. Since Af~  ~2 ,  so is ~Af ~ A(c~f) e ~ .  
Now, l e t f E  N(A) be defined as above and g ~ ~(A), with g = ~ j  seFjg~ except 

possibly on (0j  F~)' n V. Define C = (I,J~ E~) n (1.)~ F~) so that C = l,)~ I,)~. (E~ c~ F~). 
Then define C~ = E~ t~ F~, where v is the image of (k, j)  in a one-to-one map between 
the sets {v} and {(k, j)}. Thus, C = U~ C,.  It is clear that C, ~ Cj  = ~ unless 
v = v' because G 0 Q'  = (E~ ~ F~) c~ (E~, ~ F~,) = ~ unless k ~ k' and j ---= j ' ,  
i.e., unless v = v'. Also, 

! t 

J 3 

The notation ~n will be consistently used for the characteristic function of a set B. That is, ~(x) = 1 
if x e B  and f~(x) = 0 if x~B. 
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s o  

t 

Therefore, the collection {C,} satisfies properties (i) and (ii) of  the definition of the 
natural extension. 

It is easy to show t h a t f  + g = ~ ,  ~:c ( f - k  g) , ,  except possibly on V n  C', where 
( f  + g)~ = f~ -}- g~ ~ ~(A) and v ---- (k, j)~ To see this, let x ~ C. Then, x ~ C~ for one 
and only one v = (k, j).  Thus, x e E~ and x e F~. So, 

Z ~c,(f-k g)~ (x) = f,(x) -k g~(x) 

and 

( f  4- g)(x) = ~ ~EJ~(x) -k ~ sesg,(x) = A(x) q- g~(x) 

Thus, f +  g ~ ( A )  if A ( f + g )  is in ~(#2. But a similar argument shows that 
A ( f +  g) -- A f - k  Ag a.e. So, since Af -k  Ag ~ 5e2, A ( f §  g) ~ s Thus, ~(A)  is 
a domain and - f  is linear on ~(-f).  

To prove part (iii), that - f  is a local operator, the equivalent definition of a local 
operator given above is used. Thus, let g ~ ~( - f )  and g = 0 a.e. on an open set 
N C  V. It is shown that -fg = 0 a.e. on N. By hypothesis, g = Zk ~F~g~ and -fg = 

F '  ~ ~FkAgk. Also, N ----= (N n ([.)~ F~)') t.) (N n (U~ Fk)). In case x E N n (Uk k), 
then x ~ (U~F~)' n V and so -fig-----0 by definition. If, on the other hand, 
x ~ N n Uk Fk ----- Uk (Fk n N), then let Q --  {x ~ [)~ F~ n N: (-fg)(x) ~ 0}. 
Clearly, Q --= Uk Qk, where Q~ --- {x ~ Fk n N: (-fg)(x) ~ 0). Now, on the set 
Fk n N C Fk, g = g~. But Fk n N C N and so gk = 0 a.e. on F~ c3 N by hypothesis. 
Since A is a local operator and N n F~ is open, Ag~ =- A(O) -= 0 on N n F~ except on 
a set crk which has zero measure. Thus, since -fg ------ Agk on F~ n N, -fg ----- 0 on 
F ~ 0 N  except on ~ .  This means that Q ~ - - - %  and A(Q~)=0 .  But A (Q )=  
~ A(Q~) = 0, so -fg -= 0 on N except on Q, which has zero measure. 

It is now easy to prove part (iv), that the extension is unique. Let f ~  ~(- f )  and 
f-----Z~ ~E~f~ and also f =  Z~ se~-~g~, except possibly on (U~E~) 'n  V and 
(U~F~)' n V. Define f~ = ~ ~ f ~  and f~ = ~ ~F~g~- Now, on the open set 
D = (U~ E~) n (U~ F~), f~ = f = f~ everywhere; so, by part (iii), Af~ = - f f  = Aft. 
a.e. on D. It is easy to see that A(D' n V) = O, so -ff~ = - f f  = -ff~ a.e. ~ 

I f  A is a local operator and - f  is its natural extension, then it is not difficult to 
show that A -~ -~. To see that this is true, it must be shown that -~ and A have the 
same domain and that on this domain -~f = Af. Since ~(A)  C ~(-4) and -~ and A~ 
agree on ~(-f )  by Theorem 1, it suffices to show that ~(-ff) C ~(A). 

L e m m a  i .  If  A is a local linear operator, then A = A. 

The symbol [] denotes the end of the proof. 
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Proof'. The above remarks show that it suffices to have N(g)  C ~(A). To show 
this, let f ~  ~(if) .  Then, f = ~e  ~c~fe, except possibly on (Ue Q)'  n v, which has 
zero measure, and where fe e~(~/).  A l so , - . { f=  27~ ~c,oAfe and -fife s Since 
f e e  ~(A), it follows that fe = 52r ~v~ger, except possibly on (UrFkr)' n V, and 
Af~ = S~r ~F~Age~ , where ge~ ~ ~(A) and flff~ ~ s 

Form the countable collection of open sets {D.} = {Ce n Fe~}. It is easy to see 
that D. n D., = ~ unless v ~ v', so that the collection {D,} is disjoint and open and 
D. C V for all v. 

To see that h((U. D.)' n V) = 0, notice that if suffices to show that A(U . D,) ---- V. 
Now, U.D.  = Ue U~ ce n Fer = (.)e Ce n Be, where Be = U~Fk~ �9 Also, each set 
in {Ce n B~} is measurable and its members are pairwise disjoint, so h(Ue Ck n Be) 
~e  A(Ce n Be). By hypothesis, A(Be' n Is) = 0 and Ce C /.I. Therefore, 
h(B~' n Q )  = 0, which means that A(Be n Ce) = A(Ce). From these computations, 
it follows that 

e k " e . 

Thus, ;~((U. D3 '  n V) = 0. 
Let {ge,} be the functions in the definition of r e ,  and, using the correspondence 

v .~  (k, r), write ge,. = g, .  Then, as in the proof of Theorem 1, part (if), it is easy to 
show that ~ ~D g, = f ,  except possibly on (U, D,)' n V. 

Therefore, ~ = ~2, ~D~g, a.e., where g, z N(A), and {D,} satisfies the conditions 
required by the natural extension. Thus, if ~ ~oAg, z ~2 ,  then f z  N(~i). Since 
~ f z  ~2 ,  it suffices to show that A f  = ~ ,  ~DAg, a.e. But again, this follows easily by 
the method of Theorem 1, part (//), so that f z  N(J/) and N( i f )C  N(2), which was 
to be proved. [] 

It is clear that the effect of the operator J / is  essentially the same as A. In fact, if 
~(A) is made up of functions with certain analytical properties, then ~(-g) is the set 
of functions that have countably piecewise the same analytical properties. For example, 
if A = d/dx and N(d/dx) = C ~, then N(d/dx) is the set of countably piecewise C t 
functions. The theorems above show that the extension of an operator to piecewise 
domains with each "piece" giving an independent contribution is possible for any 
local operator. 

Because of the "local" character of an extended local operator A, it is possible 
to commute A with the characteristic functions of certain open sets. 

T h e o r e m  ~t. Let B be an open subset of Vsatisfying ,~(B' n B-) = ,~(SB) = 0 
and let A be an extended local operator. Then, for any f~-@(A), it follows that 
~ n f e  N(A) and A ( ~ f )  = ~ A f  a.e. 

Proof. The set B satisfies V = B w (OB) w (B-)' with (B-)' open and 

;~((~ u (B-) ') '  n V) - ;~(~B) = 0 

So, by Theorem 1 and Lemma 1, if f e  ~(A), then ~ f  = f ~ f  + ~(~-),0 ~ N(A), 
whenever A(~nf)  = ~ s A f +  ~(e-).A(0) ----- ~ A f i s  in s But clearly [I ~BAfII <~ 11Af[[, 
so A ( ~ f )  = ~sAfand f s f e ~ ( A ) .  [] 
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Since the notion of localness for operators is the key to the development of these 
papers, it is necessary to have some knowledge of  the topological structure of confi- 
guration space. Specifically, it is important to see to what extent the configuration space 
can be approximated by unions of disjoint open cubes. The theorem of Vitali contains 
all of  the information that will be needed. 

Definition. A Vitali cover for any set S C R 8N is a collectionA of closed cubes 
with the property that, i fx  ~ S and e > 0, there exists an c~ ~ A with x ~ c~ and ,~(c 0 < E. 

A version of  Vitali's theorem is: 

Theorem. (Vitali). For an arbitrary set SC R 3N andA, a Vitali cover of S, there 
exists a countable disjoint collection {Jn} of elements of A such that ?~(sn(U, J~)') = 0. 
In addition, if/~(S) < co, then, for any E > 0, there is a finite disjoint collection 

N t 
{In},z=l, and A(S n fun In) ) ~< e. 

The proof  to this theorem can be found in most textbooks on analysis, a2,~zl 
The corollaries to this theorem that are needed here are stated and proved below. 

Lemma 2. If  S is an open set, then there exists a Vitali coverA such that each 
member of A is contained entirely in S. 

Proof. Since S is open, for each x E S, there exists an open neighborhood of x 
contained entirely in S. Within this neighborhood, it is easy to construct a closed cube 
centered at x and contained entirely within the neighborhood. Call this cube C~. Let 

J~ = {c~: ~ C C~ and o~ is a closed cube centered at x}. 

Let A = U ~ s  J~- Clearly, A is the desired Vitali cover. [] 

Corollary 1. L e t S  be an open set andA be the Vitali cover of Lemma2. Then, 

(i) The countable collection {J~} which exists by Vitali's theorem is infinite. 

(ii) ~(S n (U~, Jn~ ') = 0, where Jn ~ is the interior of J , ,  and Jn ~ n j , 0  -- z 
f o r m  3& n. 

Proof. To prove (i), assume that {Jn} is finite. Then, since each jn is closed, 
(U~J~)' is open and S n (U,~Jn)' is open. But ~ ( S n  ( U ~ J ~ ) ' ) =  0, so 
S n (0n Jn)' = ~ .  Therefore, Un J~ = S, which contradicts that fact that Un Jn is 
not open. Thus, {Jn} is countably infinite. 

The proof  of (if) follows from the obvious identity )t(Un J,~) = A(U~ Jn~ the 
fact that ) (S n (U~ J,) ' )  = 0, and the inclusion j ,  0 C arm. []  

Corollary 2. Let S be a bounded open set andA be the Vitali cover of Lemma2. 
I f  {Iv} is a f n i t e  subcollection of A with the properties implied by Vitali's theorem, 
then the collection of open cubes {/n ~ has the following properties: 
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(i) 1,~ ~ t3 L,~ ~ = ~ if m =fi n, U~ 1~ ~ is open, and ~)~ I~ ~ C S. 

(ii) 0 ~ A(S) - -  A(U nIn ~ ~<e. 

(iii) ,~(~(Un I~~ = 0. 

Proof. Part (i) is clear, since In C~ I~ = ;~ for m =/= n, In ~ is open, and In C S 
for all n. 

The proof  of (ii) and (iii) follows readily from the fact that A(Oln ~ = 0. [] 

2.2. A Characterizat ion of Bounded Local Operators 

The linear operators on a Hilbert space are conveniently divided into the bounded 
and unbounded operators. A bounded operator satisfies the condition I[ A x  I] <~ c~ l] x iI, 
for some fixed and finite real number a and all x e ~(A). ~14~ While it is not true that 
all local linear operators are bounded--for  example, the differential operator is 
unbounded~the  class of all bounded local operators has a simple characterization. 
In fact, the set of all bounded local operators is exactly the set of all operators that 
multiply functions by an essentially bounded function--loosely, the multiplicative 
operators. Theorem 3 gives the precise connection. 

It is necessary first to prove two lemmas. 

Lemma 3. Let 502(V) be the usual Hilbert space on a subset V C R aN and let 
A(V) < oo. If  g is a measurable function and II gfJl < oo for all f ~  503, then g is 
bounded a.e. 

Proof. By hypothesis, IIg/IF 2 = f l  gfl~d~ = fl l  g 12f 2 l d;~ < oo for a l l f ~  502, 
i.e., for all integrablefwith f If]  2 dA < oo. But it is easy to see that ~1 = { fz:  f ~  502}. 
Thus, the hypothesis means that f II g is h I dA < oo for all h ~ 4 -  But, by Theorem 
20.15 of reference 12, l g 12 is bounded a.e. and so g is also. [~6 

Lemma 4. Let fn ~ 502 and {fn} be a Cauchy sequence in the 50~ norm. If  {fn} 
converges pointwise to a func t ionf~  5~ thenfn - + f i n  the 50~ norm. 

Proof. The proof of this lemma is contained in the proof of Theorem 13.10 of 
reference 12. 

Theorem 3. Let A be an operator whose domain is 50~(V). Then A is a bounded 
linear local operator if and only if 

(i) A f  = (A~v)f .  

(ii) ]j(A~v)fH < oo for all f ~  502. 

Proof. The proof of the forward implication is easy. Since N(A) = 502(V), 
A~v~50~,  and so A~v is defined a.e. on V. Thus, if f =  g a.e. on N, an open set, 

This short proof was kindly suggested to me by Professor R. Bonie. 
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A f  ~- (A~v)f-= (A~v)g = Ag wherever A~v is defined on N and wherever f =  g 
on N. That is, a.e. on N. Thus, A is local and the linearity is clear. Since f1(Afv)fH < oo 
for a l l f e  ~2 ,  Lemma 3 shows that A~zis  bounded a.e. Let E C Vbe the set on which 
A~v is bounded. Because A(E' n V) = O, 

Jl(A~v)flJ 2 = f I A~v 12 I f l  ~ d)L -~ f t .  t A~v ]~ t f t  2 a)~ 

~< sup i(Asev)(X)l~ [ J l f i~dh  = Q2 f [f[~dA = Q~llf[I ~ 
xe E  E 

Thus, II Afll <~ Q IIfl] for a l l f e  2~o. That is, A is bounded. 
To show the converse--namely that boundedness, linearity, and localness imply 

(i) and (//)--is slightly more complicated. The proof goes in three steps. 

Step 1. Consider first the case for which f = fD for some open set D C V 
with R(OD) = 0. Now, since ~(A) = ~(e~(V), Lemma 1 implies both that A ----- A and 
~v ~ ~(A). Because D is open, A(eD) = 0, and ~:D = seD~v, Theorem 2 shows that 
A~D = ~Asev a.e. 

Step 2. Consider next the case f = ~ for some measurable set B C V. The 
idea is to approximate B by open sets with boundaries of measure zero. The following 
construction will provide a sequence of open sets {a~},~z which satisfy A(~a~) = 0 
and which converge to ~s in the 2~o norm. 

To construct the sequence {a.}~z,  proceed as follows. First, find a sequence of 
open sets U~ which satisfy B C U~ and A(U. ~ B') < 1/2 ~+~. This is possible since 
A(B) = inf{Z(U): U is open and B C U}. Then, for each U. ,  construct a Vitali cover 
of closed cubes contained entirely within U.--as described in Lemma 2. Select from 
this the finite collection {J..~}.~=~ with the property that ) (U.  n (Urn J.m)) ~ 1/2 n+~ 
As noted above in Corollary 2, the set ~. = Um j o  has the following properties: 
(1) R(&r.) = 0, (2) c~,~ is open, (3) A(U. c~ ~.') < 1/2 -+~, and (4) ~. C U. .  

It is easy to see that ~% -+ ~ in the ~ norm. Thus, 

But 

Thus, 

Ii f~ .  - & 11 ~ = f ( f~ .  - f . ) ~  d;~ 

(r - -~ :B)~(x )= I  if x s a , ~ n B '  or Bn~r~ '  
= 0 otherwise 

So 

rl ~ .  -- ~B II ~ ~< A(~. n B') § A(B n e. ' )  ~< A(Un n B') + A(U,~ n or,,') < 1/2" 

Thus, limn se% = ~n in the 2~2 norm. Since A is bounded, 

lim A ~ .  = lim (~.(A~v) = A ~  
n 
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in the ~r norm. To finish the proof of Step 2, it suffices to show that lim~ ~%A~v = 
~BA(v in the ~ norm because s limits are unique a.e. To this end, write 

~BC~,')W(~nB') (Unc~,~')W(U~c~B') 

as the work above shows. Since ](A~:v)l 2 ~ ~ and A((U~ c~ ~, ') w (U~ n B')) < 1/2N 
the last integral can be made arbitrarily small for n large enough, v 

Step 3. Let f be an arbitrary function in s 2 . Note first that, if s is a simple 
�9 . N . . . .  

function, 1.e., s = ~,~=~ ~ : ~ ,  with B~ measurable, then, since A is hnear, As -~ (A~v)S. 
Sincef~ ~ ,  there exists a sequence of simple functions (s,} such that lira, s~ = f 

everywhere and also lira, s~ = f in the 5e2 norm. Since A is bounded, As~ = 
(A~v)S, -+ A f  in the s norm�9 Also, (A~v)S~ --+ (A~v) f  everywhere�9 Moreover, the 
sequence {(A~v)S~) is Cauchy in the 5~,~ norm, so that it follows from Lemma 4 that 
(A~v)S,,-+ (A~v)f  in the ~a z norm�9 Hence, by the uniqueness of s limits a.e., 
A f  = 

Since A is bounded, ]] Afll = ]l(A~v)f[[ ~ ~ ]]fll < ~ for a l l f E  s 2 . 
Thus, a bounded local operator A (defined everywhere on 5e2) is completely 

characterized by its action on ~v and is precisely the multiplicative operator A ( v .  
In fact, there is a trivial one-to-one map between the set of all bounded local operators 
and the subset of 5~ 2 containing the functions bounded a.e. that is 5e~. This character- 
ization shows that localness is a very restrictive property when combined with 
boundedness and that the interesting local operators are the unbounded ones�9 

3. L O C A L  O P E R A T O R S  I N  Q U A N T U M  M E C H A N I C S  

The notion of local operators was developed to see if the local properties of the 
measurement processes discussed in the introduction are inherent in quantum mecha- 
nics. Since the observables in quantum mechanics are linear operators, it is expected 
that the local nature of measurements should reside in their structure�9 In fact, in the 
so-called coordinate representation of quantum mechanics, i.e., Sea(V) observables are 
functions of the differential operators and the coordinates. (5) It is a simple matter to 
show that differential operators are local operators, and Theorem 3 shows that multi- 
plicative operators are local�9 Moreover it can be shown that Z'analytic functions" of 
local operators are local, and so, if attention is restricted to such operators, all quantum 
mechanical observables are local�9 

Before verifying these comments, it should be mentioned that in representations 
of Hilbert space other than the coordinate one the entire notion of localness may 
disappear. For example, in an energy representation in which the basis set is discrete,: 
there i sno  analog of the open sets in configuration space, In other words, "localness" 
is not a natural concept in a discrete representation. Furthermore, even in a continuous 
momentum representation in which open sets naturally occur, operators corresponding 

7 For example, see Theorem 12,34, reference 12. 
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to multiplication by functions of the coordinates become nonlocal integral 
operatorsY 5~ Thus, observaNes seem to have a local character only in the representa- 
tion related to physical three-space. This anomoly is expected, however, since local 
operators are supposed to be the manifestation of the local character of  measurements 
in three-space. 

The following collection of theorems show that observables defined on ~.~ are 
local operators. 

Theorem 4. The differential operator, defined on functions according to the 
usual limiting process, is a local operator. 

Proof. Call D the differential operator and let N be an open set; assume that f is 
in 9 (D)  and t h a t f  = 0 a.e. on N. It will be shown that D(f )  ~ 0 a.e. on N. 

Let x E N be a point at which D(f )  is defined and f(x)  = 0, that is, x is almost 
any point in N. Now, assume that D(f)(x) ~ t ~ 0, and let cr C N be any open 
neighborhood of x. Thus, 

l f ( y ) - - f ( x )  t l = l t ,  
y - - x  

for almost all y e a. That is, 

lim f (y )  - - f (x )  = Df(x) @ t 

Thus, D(f)(x) ~ 0 for almost all x ~ N, and so D is local. []  

Theorem 5. Polynomials of local operators are local operators. 

Proof. Let P = ~ = l A m ,  where Am = B,~IBm~ " " t ~  and each B,~j is 
a local operator. If  r ~ 9 ( P )  and ~b ---- 0 a.e. on N, then ~b ~ 9(B~j)  for all m and j 
and Broke = 0 a.e. on N. Thus, B,~7~_I(Bm~r = 0 a.e. on N. Hence, for all m, 
A,~b ----- 0 a.e. on N, and so P~b = 0 a.e. on N. [] 

It is possible to extend Theorem 5 to infinite series in polynomials of  local 
operators, in two ways. The two methods depend on the definition of  the "limit" of 
a sequence of  operators. The first way is in terms of  norm convergence, a6,m 

Let {An} be a sequence of  operators with domains 9(A,) .  Then, 9 = On ~(An) 
is a linear subspace since each of  9(An) is. The limit of the sequence of operators 
A ~ lira, A,  is defined for ~b e 9  by A~b ~ l im,(A,r  (in the ~o sense) if the right- 
hand side is in s The domain of A is 9(A) = {r ~ 9 :  the limit exists}. Clearly, 
*@(A) is a linear subspace and A is linear on 9(A) since each A,  is linear. 

The second method of defining the limit of  a sequence of  operators is in terms of  
pointwise convergence. Define A ~ limn An for ~b ~ 9 as (A~b)(x) ---lim~(A~b)(x) 
(in the pointwise sense) if the right-hand side is in s Clearly, A is linear on the linear 
subspace 9(A)  ~ {~b s 9 :  the limit exists}. 

Theorems 6a and 6b below show that, whichever method is used to define the 
limit, the limit operator is local if each operator in the sequence is. 
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T h e o r e m  6a. Let {A,} be a sequence of local operators with domains ~(A,) .  
I f  A is defined as the 5q~-type limit of these operators, then A is a local operator. 

Proof. L e t f ~  ~(A) and l e t f  = 0 a.e. on an open set N. Then, since f ~  N(An) 
for all n, A ~ f  ---- 0 a.e. on N and ~ N A ~ f  ~ 0 a.e. Therefore, 

]l ~z~Af]] = II ~ N A f  - ~NA,~fI[ <~ II A f  - A,~frl < e 

for arbitrary e > 0 and n large enough. Thus, ~ N A f  = 0 a.e. and so A f  = 0 a.e. 
o n N .  [] 

T h e o r e m  6b. Let {An} be a sequence of local operators with domains ~(An). 
I f  A is defined as the pointwise-type limit of these operators, then A is local. 

Proof. L e t f ~  ~(A) and l e t f  = 0 a.e. on an open set N. Thus, since f E  ~(An) 
and A~ is local, A , J  = 0 on N~ C N,  with ~/(N~' n N) = 0. Hence, A,~ f  ~- 0 on 
M = ('/~ N,~ and A(N N M' )  ~< ~ ,  A(N n N, ' )  = 0. Thus, for all n, A J  = 0 on M, 
which is almost all of  N. So, if x ~ M, then l i m ~ ( A ~ f ) ( x )  = 0 = ( A f ) ( x ) .  [] 

The theorem that "analytic functions" of  local operators are local is now easy. 

T h e o r e m  6c. Let A be defined by an analytic function in local operators in 
terms of  either an ~~ limit or a pointwise-type limit. Then A is a local operator. 

Proof. By hypothesis, A ----- l im, An in either the &~ or pointwise sense, where 
A~ = ~ = a P ~  and Pm is a product of powers of  local operators. Thus, A,~ is a 
polynomial in local operators, and so, by Theorem 5, A~ is a local operator. This 
means that the hypothesis of either Theorem 6a or 6b are met, so A is a 
local operator. [] 

4. L O C A L  O P E R A T O R S  A N D  F O R M A L  E N S E H B L E S  

Having developed the properties of local operators and having shown their 
connection to observables, it is possible to examine the extent to which measured 
values can be written as ensemble averages as conjectured in the introduction. This 
is done by looking at expectation values of local operators. It  is shown in this section 
that expectation values can be written in a natural way as ensemble averages over 
certain "states." 

The discussion which follows will be limited to closed systems which are contained 
in a bounded, connected, open region of three-space called //3. The configuration 
space of such a system is the 3N-dimensional real space R 3N and wave functions for 
the system vanish identically outside the open set V ---- {q ~ R3N: rl ~ V~ ..... r N ~ V3}, 
where the notation q = (r l ,  r2 ..... rN) is used. The set Va is assumed to satisfy 
A(~V) = 0, ioe., certain sets with pathological boundaries of  nonzero measure are 
excluded. 



A N e w  Approach for the Justification of Ensembles 229 

In the work below, special partitions of the configuration space into disjoint 
subsets are used. 

Defini t ion.  A finite collection a = {~}g=l is called a partition of Vi f the  sets 
cry. are pairwise disjoint, open subsets of  V with the property that 

The following technical lemmas about these partitions will be needed. In the 
first lemma, the more general case 22 ----- oo is treated, since this case is required else- 
where. 

L e m m a  5. Let {~}7=1 be a collection ofpairwise disjoint, open subsets of Vwith 
the property A((U~ ~,)' n V) = 0 and ,~(8 V) = 0. Then 

( i )  2,(U~ 8~,) = o. 

(ii) A(aaj) ----- 0 for all j. 

Proof. To prove (i), it is necessary to establish the following inclusion, which is 
easily verified: 

The following identity and inclusion 

' ' \ '  OV) 

follow from V n ~ V = ~ and V u ~ V = V-, and from (2) and (3) it follows that 

Thus, A((U, 8ai) n V-) = 0. But 8ai C V-. Hence, U~' 8aj c v- ,  which proves (i), 
that is, 

3 

Part (ii) is now a trivial consequence of (i). [] 

L e m m a  6. I f { a ~ n  is apar t i t ion  of V a n d i f B =  U ~ J  then ( i ) ~ n =  ~v J J j = l  

a.e. and (ii) sev = ~]j ~:~, a.e. 

Proof. Part (i) follows from (UJ ~J) u ((Uy a~)' n v)  = F. Thus, ~a = ~v 
except on (OJ ~rj)' n V, which has zero measure. To prove (ii), notice that ~]j ~:% ---- ~B 
because the crj are pairwise disjoint. Therefore, ~v = ZJ ~% a.e. follows from (i). []  

822/2/3-2 
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In order to make the transition from quantum mechanics to statistical mechanics, 
it is necessary to examine the expectation values of quantum mechanical operators. 
These, of course, are expressions of the form (99, A99), where A is an operator repre- 
senting some observable and 99 is the state of the system. The following theorem, which 
appears as a technical result applying to any extended local operator, is the crucial 
step in the transition. 

Theorem 7. 
of V, then 

Proo~ 

If  A is an extended local linear operator and {aj}y=~ is a partition 

s 

(99, A99) = ~ (99~, A99~), where 99j : ~:~,99 

g2 

: f eo,99, 99da 
5=1 

which follows from Lemma 6. Now, A is an extended local operator and l(&rj) ----- 0 
by Lemma 5 above, so Theorem 2 implies that ~%A99 = A~%99 a.e. Therefore, since 

= 

f2 

J=l j=l 

= i A( op) = Z (99,, A99,) [] 
J=l " j = l  

Consider one of the functions 99j = ~:~99 which occur in Theorem 7. Its contribu- 
tion to the expectation value is (99~, A99j). Defining P~ = Jl 995 [[2, the decomposition 
can be rewritten as 

(99, A99) ---- ~ (cpj, A%-) Pj (4) 
j = l  

where q~j -~ 99~/]J 99~ ]'~ and, clearly, Z~ P~ = 1 and 0 ~ P~ ~ 1. Thus, the expectation 
value of an extended local operator can be written as a weighted sum of expectation 
values. Because of the form of Eq. (4), this decomposition is called an ensemble 
decomposition of the pure state. 

From Theorem 7, it is clear that the wave functions q~ in Eq. (4) arise from disjoint 
regions in configuration space and are the analogs of the "portions of the wave func- 
tion" giving independent contributions to measured values discussed in the introduc- 
tion. Thus, the ensemble decomposition satisfies the essence of the idea that measured 
values are actually ensemble averages with local regions of space providing inde- 
pendent contributions. It should also be noted that the functions q~j can be chosen in 
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an uncountable number of different ways and that, for at least one of these choices, 
Pj -- I/X2 for all j. This choice corresponds to a kind of equal weighting of different 
portions of configuration space and will be useful when the connection to statistical 
mechanics is made. 

It is also important to note that the operator A must be an extended local operator 
for the above theorem to hold. Indeed, it is the 10calness of the operator which 
allows disjoint pieces of the wave function to give independent contributions to the 
expectation value. It should be noted again, too, that while quantum operators are 
local, they are not, in general, extended. Thus, in quantum mechanics; the operator 
of the right-hand side of Eq. (4) is actually A~ 

The decomposition of Eq. (4) is certainly not uniqu e. Moreover, the decomposi- 
tion is essentially a formal result because the functions q~j vanish in a much larger 
region of configuration space than the function ~b. Thus, the ensemble of functions 
{q~j} is not a physical ensemble although the two are formally similar. In fact, each qoj 
is in s and in the domain of ~. 

Up to this point, the notion Of a macroscopic system has been introduced onby 
to ensure that the system is in a bounded container and has boundary-independent 
properties. The results above depend only on the topology of configuration space, the 
analytic behavior of the inner product, and the notion oflocalness for operators. Thus, 
all results obtained above--in particular, the ensemble decomposition apply to any 
system. 

In the second paper in this series, attention will be restricted [o macroscopic 
systems. For such systems, special kinds o f  partitions are introduced which ultimately 
lead to a connection between Gibbsian ensembles and the formal ensembles developed 
here. 

5. S U M M A R Y  

This paper and its companion paper are concerned with the problem of justifying 
the use of ensembles in quantum statistical mechanics. In this paper, it is argued that 
the statistical aspects of large systems have their origin in the "local" character of 
measuring processes. This is in contrast to the long-established notion of ergodic 
theory that ensembles result from time averages of dynamical variables. 

In order to formalize the physical idea of "localness," a type of operator, called 
a local operator, was introduced. It was shown that such an operator can be extended 
to another local operator which has the useful property that it commutes with the 
characteristic function of certain open sets. Using these developments, a complete 
characterization of the bounded local operators was given. 

The relationship between local operators and measurements was made by 
showing that the observables in quantum mechanics are local operators. Finally, a 
preliminary connection to statistical mechanics was made by considering expectation 
values. It was shown that expectation values for local operators can be written exactly 
as formal ensemble averages. Moreover, these formal averages reflect the physical 
idea that measurements actually involve an average of measured values arising from 
disjoint local regions in three-space. 
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